Second Hankel determinant for bi-starlike and bi-convex functions of order β
نویسندگان
چکیده
In this paper we obtain upper bounds for the second Hankel determinant H2(2) of the classes bi-starlike and bi-convex functions of order β, which we denote by S∗ σ(β) and Kσ(β), respectively. In particular, the estimates for the second Hankel determinat H2(2) of bi-starlike and bi-convex functions which are important subclasses of bi-univalent functions are pointed out.
منابع مشابه
HANKEL DETERMINANT FOR p-VALENT STARLIKE AND CONVEX FUNCTIONS OF ORDER α
The objective of this paper is to obtain an upper bound to the second Hankel determinant |ap+1ap+3 − ap+2| for p-valent starlike and convex functions of order α, using Toeplitz determinants. AMS Mathematics Subject Classification (2010): 30C45, 30C50
متن کاملSecond Hankel Determinant for a Class of Analytic Functions Defined by Fractional Derivative
Also let S, S∗ β , CV β , and K denote, respectively, the subclasses of A0 consisting of functions which are univalent, starlike of order β, convex of order β cf. 1 , and close-to-convex cf. 2 in U. In particular, S∗ 0 S∗ and CV 0 CV are the familiar classes of starlike and convex functions in U cf. 2 . Given f and g inA, the function f is said to be subordinate to g in U if there exits a funct...
متن کاملAn upper bound to the second Hankel functional for the class of gamma-starlike functions
The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$ for the function $f$, belonging to the class of Gamma-starlike functions, using Toeplitz determinants. The result presented here include two known results as their special cases.
متن کاملHoradam Polynomials Estimates for $lambda$-Pseudo-Starlike Bi-Univalent Functions
In the present investigation, we use the Horadam Polynomials to establish upper bounds for the second and third coefficients of functions belongs to a new subclass of analytic and $lambda$-pseudo-starlike bi-univalent functions defined in the open unit disk $U$. Also, we discuss Fekete-Szeg$ddot{o}$ problem for functions belongs to this subclass.
متن کاملThe norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$
In the present investigation, we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $, where $Vert T_{f} Vert= sup_{|z|
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 271 شماره
صفحات -
تاریخ انتشار 2015